• Justify all your assertions.
  • There are 10 problems. Try to solve all of them and make solutions and proofs as complete as possible.
  • Use a separate sheet for each problem.
  • Write your name on the top right corner of each page.

Problem 1.

a. Let X , Y X , Y X,YX, YX,Y be topological spaces. Suppose X X XXX is compact and Y Y YYY is Hausdorff. Show that every continuous bijection f : X Y f : X Y f:X rarr Yf: X \rightarrow Yf:XY is a homeomorphism.
b. Give an example of two topological spaces X , Y X , Y X,YX, YX,Y, and a continuous map f : X Y f : X Y f:X rarr Yf: X \rightarrow Yf:XY such that f f fff is a bijection but not a homeomorphism.
Problem 2. Let τ τ tau\tauτ be the collection of subsets of R 2 R 2 R^(2)\mathbb{R}^{2}R2 defined as follows: U τ U τ U in tauU \in \tauUτ if and only if U = U = U=O/U=\emptysetU= or R 2 U R 2 U R^(2)\\U\mathbb{R}^{2} \backslash UR2U consists of a (possibly empty) finite union of points and straight lines.
a. Show that τ τ tau\tauτ is a topology on R 2 R 2 R^(2)\mathbb{R}^{2}R2.
b. Determine whether τ τ tau\tauτ is Hausdorff.
c. Show that τ τ tau\tauτ is coarser than the Euclidean topology on R 2 R 2 R^(2)\mathbb{R}^{2}R2.
d. Determine whether R × { 0 } R × { 0 } Rxx{0}\mathbb{R} \times\{0\}R×{0} is a compact subspace of ( R 2 , τ ) R 2 , τ (R^(2),tau)\left(\mathbb{R}^{2}, \tau\right)(R2,τ).
Problem 3. Let X X XXX be the set of points in R 2 R 2 R^(2)\mathbb{R}^{2}R2 with at least one irrational coordinate, that is, X = R 2 Q 2 X = R 2 Q 2 X=R^(2)\\Q^(2)X=\mathbb{R}^{2} \backslash \mathbb{Q}^{2}X=R2Q2. Equip X X XXX with the subspace topology induced by the Euclidean topology on R 2 R 2 R^(2)\mathbb{R}^{2}R2.
a. Show that X X XXX is path-connected.
b. Show that the fundamental group of X X XXX is uncountable.
Problem 4. Let R P n R P n RP^(n)\mathbb{R} \mathbb{P}^{n}RPn denote the n n nnn-dimensional real projective space, and let T m = S 1 × × S 1 m -times T m = S 1 × × S 1 m -times  T^(m)=ubrace(S^(1)xx cdots xxS^(1)ubrace)_(m"-times ")\mathbb{T}^{m}=\underbrace{\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}}_{m \text {-times }}Tm=S1××S1m-times  denote the m m mmm-dimensional torus.
a. Let n 2 n 2 n >= 2n \geq 2n2. Show that every continuous map f : R P n T m f : R P n T m f:RP^(n)rarrT^(m)f: \mathbb{R P}^{n} \rightarrow \mathbb{T}^{m}f:RPnTm is null-homotopic.
b. Is every continuous map f : R 1 T m f : R 1 T m f:R^(1)rarrT^(m)f: \mathbb{R}^{1} \rightarrow \mathbb{T}^{m}f:R1Tm null-homotopic?
Problem 5. Let C C C\mathcal{C}C and \ell be respectively a circle and a straight line in R 3 R 3 R^(3)\mathbb{R}^{3}R3 with C = C = Cnnℓ=O/\mathcal{C} \cap \ell=\emptysetC=. Let S S SSS be the union of C C C\mathcal{C}C and \ell, that is, S = C S = C S=CuuℓS=\mathcal{C} \cup \ellS=C. Compute the fundamental group of R 3 S R 3 S R^(3)\\S\mathbb{R}^{3} \backslash SR3S in the following two cases:
a. There is a plane Π Π Pi\PiΠ in R 3 R 3 R^(3)\mathbb{R}^{3}R3 such that \ell and C C C\mathcal{C}C lie in different components of R 3 Π R 3 Π R^(3)\\Pi\mathbb{R}^{3} \backslash \PiR3Π.
b. There is no plane Π Π Pi\PiΠ in R 3 R 3 R^(3)\mathbb{R}^{3}R3 such that \ell and C C C\mathcal{C}C lie in different components of R 3 Π R 3 Π R^(3)\\Pi\mathbb{R}^{3} \backslash \PiR3Π.
Problem 6. Let T 2 = S 1 × S 1 R 4 T 2 = S 1 × S 1 R 4 T^(2)=S^(1)xxS^(1)subR^(4)\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1} \subset \mathbb{R}^{4}T2=S1×S1R4 denote the 2-torus, defined as the set of points w , x , y , z w , x , y , z w,x,y,zw, x, y, zw,x,y,z such that w 2 + x 2 = y 2 + z 2 = 1 w 2 + x 2 = y 2 + z 2 = 1 w^(2)+x^(2)=y^(2)+z^(2)=1w^{2}+x^{2}=y^{2}+z^{2}=1w2+x2=y2+z2=1, with the product orientation determined by the standard orientation on S 1 S 1 S^(1)\mathbb{S}^{1}S1. Compute T 2 σ T 2 σ int_(T^(2))sigma\int_{\mathbb{T}^{2}} \sigmaT2σ, where σ σ sigma\sigmaσ is the following 2-form on R 4 R 4 R^(4)\mathbb{R}^{4}R4 :
σ = x y 2 z d w d y σ = x y 2 z d w d y sigma=xy^(2)zdw^^dy\sigma=x y^{2} z d w \wedge d yσ=xy2zdwdy

Problem 7.

a. Given a smooth map F : M N F : M N F:M rarr NF: M \rightarrow NF:MN between two smooth manifolds M M MMM and N N NNN define the notions of a critical point and a critical value of F F FFF.
b. Define Z := { ( x , a , b , c ) R 3 : a x 2 + b x + c = 0 , a 0 } Z := ( x , a , b , c ) R 3 : a x 2 + b x + c = 0 , a 0 Z:={(x,a,b,c)inR^(3):ax^(2)+bx+c=0,a!=0}\mathcal{Z}:=\left\{(x, a, b, c) \in \mathbb{R}^{3}: a x^{2}+b x+c=0, a \neq 0\right\}Z:={(x,a,b,c)R3:ax2+bx+c=0,a0}.
i) Prove that Z Z Z\mathcal{Z}Z is a smooth submanifold of R 3 R 3 R^(3)\mathbb{R}^{3}R3;
ii) Define π : Z R 3 π : Z R 3 pi:ZrarrR^(3)\pi: \mathcal{Z} \rightarrow \mathbb{R}^{3}π:ZR3 by π ( x , a , b , c ) = ( a , b , c ) π ( x , a , b , c ) = ( a , b , c ) pi(x,a,b,c)=(a,b,c)\pi(x, a, b, c)=(a, b, c)π(x,a,b,c)=(a,b,c) for every ( x , a , b , c ) Z ( x , a , b , c ) Z (x,a,b,c)inZ(x, a, b, c) \in \mathcal{Z}(x,a,b,c)Z. Prove that ( a , b , c ) ( a , b , c ) (a,b,c)(a, b, c)(a,b,c) is a critical value of π π pi\piπ if and only of b 2 4 a c = 0 b 2 4 a c = 0 b^(2)-4ac=0b^{2}-4 a c=0b24ac=0.
Problem 8. Consider the set of all ordered triples of vectors in R 4 R 4 R^(4)\mathbb{R}^{4}R4 such that they form an orthonormal basis of their linear span. Endow this set with the natural structure of an embedded submanifold in R N R N R^(N)\mathbb{R}^{N}RN for certain N N NNN. What is the dimension of this submanifold?
Problem 9. Given g 1 , g 2 C ( R 2 ) g 1 , g 2 C R 2 g_(1),g_(2)inC^(oo)(R^(2))g_{1}, g_{2} \in C^{\infty}\left(\mathbb{R}^{2}\right)g1,g2C(R2) and two smooth vector fields X 1 X 1 X_(1)X_{1}X1 and X 2 X 2 X_(2)X_{2}X2 in R 2 R 2 R^(2)\mathbb{R}^{2}R2 such that X 1 X 1 X_(1)X_{1}X1 and X 2 X 2 X_(2)X_{2}X2 are linearly independent at every point (i.e., form a frame) and [ X 1 , X 2 ] = α 1 X 1 + α 2 X 2 X 1 , X 2 = α 1 X 1 + α 2 X 2 [X_(1),X_(2)]=alpha_(1)X_(1)+alpha_(2)X_(2)\left[X_{1}, X_{2}\right]=\alpha_{1} X_{1}+\alpha_{2} X_{2}[X1,X2]=α1X1+α2X2 for some smooth functions α 1 α 1 alpha_(1)\alpha_{1}α1 and α 2 α 2 alpha_(2)\alpha_{2}α2 in R 2 R 2 R^(2)\mathbb{R}^{2}R2, prove that the following system of equations with respect to the function u C ( R 2 ) u C R 2 u inC^(oo)(R^(2))u \in C^{\infty}\left(\mathbb{R}^{2}\right)uC(R2)
{ X 1 ( u ) = g 1 X 2 ( u ) = g 2 X 1 ( u ) = g 1 X 2 ( u ) = g 2 {[X_(1)(u)=g_(1)],[X_(2)(u)=g_(2)]:}\left\{\begin{array}{l} X_{1}(u)=g_{1} \\ X_{2}(u)=g_{2} \end{array}\right.{X1(u)=g1X2(u)=g2
has a solution on R 2 R 2 R^(2)\mathbb{R}^{2}R2 if and only if
X 1 ( g 2 ) X 2 ( g 1 ) = α 1 g 1 + α 2 g 2 X 1 g 2 X 2 g 1 = α 1 g 1 + α 2 g 2 X_(1)(g_(2))-X_(2)(g_(1))=alpha_(1)g_(1)+alpha_(2)g_(2)X_{1}\left(g_{2}\right)-X_{2}\left(g_{1}\right)=\alpha_{1} g_{1}+\alpha_{2} g_{2}X1(g2)X2(g1)=α1g1+α2g2
Problem 10. Let D D DDD be a distribution on a manifold M, X X XXX be a vector field on M M MMM, and e t X e t X e^(tX)e^{t X}etX denote the local flow of X X XXX.
a. Prove that if ( e t X ) D = D e t X D = D (e^(tX))_(**)D=D\left(e^{t X}\right)_{*} D=D(etX)D=D for sufficiently small t t ttt then
(1) [ X , Y ] D , Y D (1) [ X , Y ] D , Y D {:(1)[X","Y]in D","quad AA Y in D:}\begin{equation*} [X, Y] \in D, \quad \forall Y \in D \tag{1} \end{equation*}(1)[X,Y]D,YD
i.e. the vector field [ X , Y ] [ X , Y ] [X,Y][X, Y][X,Y] is tangent to D D DDD for every vector field Y Y YYY tangent to D D DDD.
b. A vector field X X XXX is called an infinitesimal symmetry of the distribution D D DDD if the relation (1) holds. Assume that dim M = n dim M = n dim M=n\operatorname{dim} M=ndimM=n, rank D = m rank D = m rank D=m\operatorname{rank} D=mrankD=m. Prove that X X XXX is an infinitesimal symmetry of D D DDD if and only if for every tuple of the locally defining 1 - forms ω 1 , ω n m ω 1 , ω n m omega_(1),dotsomega_(n-m)\omega_{1}, \ldots \omega_{n-m}ω1,ωnm of D D DDD the following identities hold:
( L X ω i ) ω 1 ω n m = 0 , i = 1 , , n m L X ω i ω 1 ω n m = 0 , i = 1 , , n m (L_(X)omega_(i))^^omega_(1)^^dotsomega_(n-m)=0,quad AA i=1,dots,n-m\left(L_{X} \omega_{i}\right) \wedge \omega_{1} \wedge \ldots \omega_{n-m}=0, \quad \forall i=1, \ldots, n-m(LXωi)ω1ωnm=0,i=1,,nm
c. Let M = R 3 M = R 3 M=R^(3)M=\mathbb{R}^{3}M=R3 with standard coordinates ( x , y ) ( x , y ) (x,y)(x, y)(x,y), and D = ker θ D = ker θ D=ker thetaD=\operatorname{ker} \thetaD=kerθ
θ = d z 1 2 ( x d y y d x ) θ = d z 1 2 ( x d y y d x ) theta=dz-(1)/(2)(xdy-ydx)\theta=d z-\frac{1}{2}(x d y-y d x)θ=dz12(xdyydx)
Prove that for any f C ( R 3 ) f C R 3 f inC^(oo)(R^(3))f \in C^{\infty}\left(\mathbb{R}^{3}\right)fC(R3) there exists the unique infinitesimal symmetry X f X f X_(f)X_{f}Xf of D D DDD such that θ ( X f ) f θ X f f theta(X_(f))-=f\theta\left(X_{f}\right) \equiv fθ(Xf)f. Express X f X f X_(f)X_{f}Xf explicitly in terms of f f fff.